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Abstract. Several decades of dynamical analyses of food-web networks [1–6] have led to important insights
into the effects of complexity, omnivory and interaction strength on food-web stability [6–8]. Several re-
cent insights [7,8] are based on nonlinear bioenergetic consumer-resource models [9] that display chaotic
behavior in three species food chains [10,11] which can be stabilized by omnivory [7] and weak interaction
of a fourth species [8]. We slightly relax feeding on low-density prey in these models by modifying stan-
dard food-web interactions known as “type II” functional responses [12]. This change drastically alters the
dynamics of realistic systems containing up to ten species. Our modification stabilizes chaotic dynamics
in three species systems and reduces or eliminates extinctions and non-persistent chaos [11] in ten species
systems. This increased stability allows analysis of systems with greater biodiversity than in earlier work
and suggests that dynamic stability is not as severe a constraint on the structure of large food webs as
previously thought. The sensitivity of dynamical models to small changes in the predator-prey functional
response well within the range of what is empirically observed suggests that functional response is a crucial
aspect of species interactions that must be more precisely addressed in empirical studies.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 05.45.Jn High-dimensional chaos
– 05.45.Pq Numerical simulations of chaotic systems – 87.23.-n Ecology and evolution

1 Introduction

Studying large networks that combine dynamical and
structural complexity is severely limited by the lack of
mathematical tools for analysis [13]. One of the clearer
examples of such limitations includes ecological food
webs [14,15]. For example, realistic modeling of the ef-
fect of reducing seal populations on populations of the
fishes they eat is prevented by the current mathemati-
cal intractability of large networks involving the many
species within marine ecosystems [14]. Similarly, recent
insights [7,8] based on nonlinear bioenergetic consumer-
resource models [9] into the effects of complexity, om-
nivory and interaction strength on food-web stability [6–8]
are largely limited to unrealistically small networks con-
taining less than five species. Here, we show that slight and
empirically reasonable modification of standard “type II”
food-web interactions, which very slightly reduces organ-
isms’ consumption at low resources levels, escapes these
limitations by stabilizing chaotic and non-permanent pop-
ulation dynamics of species embedded in food webs of
10 or more species. This new mathematical tool allows
more sophisticated applications to larger networks and ba-
sic scientific insights [7,8] based on nonlinear bioenergetic
consumer-resource models [9] to be examined in networks
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that more accurately represent the complexity found in
nature.

Most recent work on complex food webs has focused
on their network structure or “topology”. Such food webs
or networks are simply characterized as nodes represent-
ing species and links representing binary directed feeding
interactions between species. A rich history of topolog-
ical food-web analysis began in the 1970’s [16] and has
accelerated recently with interdisciplinary interest in net-
works [17–19]. Food webs are thought to share certain sta-
tistical properties including constant connectance, scale
dependence, heavy-tailed degree distributions and short
characteristic path lengths of approximately two. Con-
stant connectance asserts that directed connectance (C),
or the fraction of all possible links (L) among species (S)
that are realized within food webs (C = L/S2), does not
systematically vary with species number [20–23]. This hy-
pothesis is equivalent to asserting a power law where links
scale with the square of species number. Scale dependence
asserts that the fractions of top and basal species and links
between them decrease with increasing species number
while the fractions of intermediate species and links be-
tween them increase [21,22,24]. Top species have resource
species (e.g., prey, hosts, etc.) but no consumers (e.g.,
predators, parasites, etc.) while basal species have con-
sumers but no resource species and intermediate species
have both consumers and resources.
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In contrast to these patterns among food webs, more
recent analyses stimulated by network theory has focused
on patterns within food webs. Food-web degree distri-
butions representing the probability of species having at
least a certain number of links attached to them have
been found to be “heavy-tailed”, meaning that there are
fewer highly connected species than expected in the well-
known “scale-free” networks [25]. Also, while food webs
have short minimum undirected distances or “characteris-
tic path lengths” between species, their clustering coeffi-
cient appears too low for food webs to be considered small
world networks [17,25]. Most recently, food webs have
been found to have a nearly constant power-law exponent
representing a remarkably robust balance between a star-
shaped pattern where all species are basal species deriving
energy directly from the environment and all species ex-
isting in a single long food chain with one plant, one herbi-
vore, one primary carnivore, one secondary carnivore and
so on [18]. Finally, the historical disparity between the
theoretically stabilizing effects of compartments in food
webs and their empirical absence has been reduced by im-
proved data and analyses that illustrate the presence of
such compartments in nature [19].

While these statistical patterns form much of the ana-
lytical foundation for complex food webs, we focus here on
models of mechanisms that may explain food-web struc-
ture rather than more phenomological aspects of their
structure discussed above. One such model [17,26] that
we employ here successfully explains much of the struc-
ture of the most complex food webs in the primary liter-
ature (Fig. 1). Another well-known model that we focus
most upon here is a bioenergetic model of the nonlinear
dynamics or evolution of species’ biomass over time [9–11].
By altering the details of this model, we show how subtle
ecological nonlinearities can stabilize large ecological net-
works and permit more of the interaction between their
structure and dynamics to be explored.

2 Methods

We base our approach on a bioenergetic consumer-
resource model of the time evolution of species biomass
that follows previous work [7–9,11] that is generalized to
n species and arbitrary functional responses. Extending
the earlier notation [9] to n-species systems, the variation
of Bi, the biomass of species i, is given by

B′
i(t) = Gi(B) − xiBi(t)

+
n∑

j=1

(xiyijαijFij(B)Bi(t) − xjyjiαjiFji(B)Bj(t)/eij),

(1)

where t is time; Gi(B) is the growth rate of species i,
and is potentially a function of the biomass of all species;
xi is the mass-specific metabolic rate; eij is the energy con-
version efficiency of species i for biomass from species j;
yij is a measure of the maximum rate at which species i in-
gests species j per unit metabolic rate of species i; and αij

Fig. 1. Niche model diagram. The niche model
[17,26,43–45,47] hypothesizes that food-web structure is
a result of a particular arrangement of a one-dimensional
community niche space where all species and their diets are
located. S (trophic species richness, here S = 7, each shown
by inverted triangles) and C (connectance) are set at the
observed values for the empirical web being modeled. The
niche model assigns each of S species a uniformly random
“niche value” 0 ≥ ni ≥ 1 that establishes each species’
location in the community niche. Each species is then assigned
a beta distributed feeding range 0 ≥ ri ≥ 1 with a mean
equal to connectance (C = L/S2). Each ith species consumes
all species within their ri which is placed completely on the
niche by choosing a uniformly random center (ci) of the range
between ri/2 and min[ni, 1 − (ri/2)]. The species with the
lowest ni is assigned ri = 0 so that each “niche web” has at
least one basal species. All other species that happen to eat
no other species are also basal species.

is the relative preference of species i for species j, normal-
ized so that

∑
j

αij = 1 for consumer species and is zero

for producer species. Fij(B), the non-dimensional func-
tional response, gives the fraction of the maximum inges-
tion rate of predator species i consuming prey species j
and is a function of the biomass of the various species.
The many parameters in these equations have been esti-
mated from empirical measurements [9] and there are wide
ranges of biologically plausible values.

The growth rate is

Gi(B) = riBi(t)(1 − Bi(t)/Ki), (2)

where ri is the intrinsic growth rate and Ki is the carrying
capacity. There is no competitive exclusion among basal
species in systems with more than one producer species.

The functional response of predator i and prey j is

Fij(B) =
Bj(t)1+qij

n∑
k=1

αikBk(t)1+qij + B
1+qij

0ji

(3)

where B0ji is the half saturation density of species j
when consumed by species i and the parameter qij con-
trols the form of the functional response (Fig. 2). When
qij = 0, the response is the standard Holling type II re-
sponse [12] used in many earlier studies [7–11] and is a
linear response when the prey density Bj is small that
saturates to a constant when Bj is large. Increasing qij

alters the type II response [27,28] to become the sig-
moidal type III response [9,29,30] when qij = 1. Type III
responses have previously been shown to stabilize two-
species systems [9,29,30], but intermediate functional re-
sponses with variable q and the role of type III responses
in larger systems have not been explored before.
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Fig. 2. Single species type II (q = 0), modified type II (q =
0.1, 0.25) and standard type III (q = 1) functional responses.

3 Results and discussion

There is a range of biologically reasonable parameters
over which a simple three species food chain with type II
functional responses has chaotic dynamics [11]. In order to
more clearly build upon the foundations of earlier work,
we use the same parameter set used in recent investiga-
tions of the effects of omnivory and interaction strength
on food web stability [6,7]. In this three species system,
increasing q to make both links type “II.2” responses
(q21 = q32 = 0.2, Fig. 2) causes a dramatic change in
the system’s dynamics (Fig. 3). As q increases, the sys-
tem quickly stops being chaotic before q = 0.05 and then
passes through period-doubling reversals and the stabi-
lization of limit cycles, eventually reaching a stable sta-
tionary solution when q ≈ 0.2. Note that the form of the
functional response (Fig. 2) changes very little as the sys-
tem moves from chaotic to stable solutions.

Allowing different links to have different functional re-
sponses shows that locating the more stabilizing func-
tional response higher in the food chain leads to more
stability than locating it lower in the chain. When only
the link from the top species to the intermediate species
is the modified type II response (0 < q32 < 0.5, q21 = 0,
Fig. 4a), overall the behavior of the systems is virtually
identical to when both links are modified type II responses
(Fig. 3). When only the link from the intermediate species
to the producer species is a modified type II response
(0 < q21 < 0.5, q32 = 0, Fig. 4b), the chaotic system
becomes doubly periodic as q initially increases but the
system becomes chaotic again at q > 0.4.

The system (1-3) has a large number of free param-
eters, which is convenient for matching the dynamics to
a range of biological conditions but is inconvenient when
trying to understand the general behavior of systems with
a large number of species. For general understanding, it
helps to make some simplifying assumptions about the
parameter values while maintaining biologically realistic

values. We studied a ten-species system with the growth
rate and carrying capacity of all producer species equal
to one, and used equal biomass conversion efficiencies
for all species and identical responses for all interactions
(ri = Ki = 1, eij = e and qij = q). The topology and diet
preferences αij of this system are shown in Figure 5. This
network is constrained by several empirical patterns. Its
connectance (C = L/S2) of 0.14 is close to the middle of
its commonly observed range [20]. The network topology
was generated by the empirically successful niche model
(Fig. 1 [26]) and the diet preferences emphasize energy
flow along the energetically predominant short chains to
basal species [31–33].

The results of running this system over a range of q is
shown in Figure 6. As in the three species system, there
is a drastic change in the system’s dynamics over a small
range of q but q stabilizes the 10-species system at a 50%
higher value (0.3) than in the 3 species system (Fig. 3). As
q is lowered, the system becomes unstable, passes through
a number of bifurcations and eventually becomes chaotic
when q ≈ 0.2. When q ≈ 0.09 species 6 and 10 go extinct,
followed by species 9 at q ≈ 0.06, so that when q = 0, there
is no solution, stable or chaotic, in which all ten species
are present. The extinctions eliminate the two top species
of the original network, eliminate omnivory and lower the
maximum trophic level from just over four to three.

As q decreases in the chaotic area of Figure 6, the
minimum biomass of most species also drops and eventu-
ally becomes very close to zero. These very low minimum
populations are thought likely to go extinct and biologi-
cally reasonable solutions are thought to be bounded some
“healthy” distance away from zero to maintain “persistent
chaos” [9,11]. If species in non-persistent chaos go extinct,
extinctions would be more prevalent and occur at higher
values of q than discussed above for the 10-species system
shown in Figure 5.

Ten-species systems with different network topologies
and sets of parameter values were tried. It was easy to
find parameter values that gave a permanent stationary
solution when q = 0.5. All of these permanent systems
showed similar behavior as q decreased, becoming unstable
and passing through limit cycles to chaos that was usually
non-persistent for several species. In many cases, as shown
in Figure 6, this progression continued to one or more
extinctions.

Holling [12] introduced type II models (q = 0) as typ-
ical of invertebrate behavior and type III (q = 1) mod-
els as typical of vertebrates, but later empirical studies
have shown the situation to be more complex. Type II re-
sponses are typical of mammalian herbivores [34,35], and
are found in other vertebrate predators [36], while type
III responses are found in invertebrates such as arthro-
pod predators and parasitoids [30] and phytoplankton-
consuming zooplankton [37,38]. It appears that the re-
sponses examined here that are intermediate between
type II and III have not been formally examined. How-
ever, our informal surveys of data and the literature sug-
gest that our type II.1, II.2, and II.3 responses fit many
data as well as standard type II responses. Therefore, we
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Fig. 3. Local minima and maxima for each species in a simple three-species food chain for a range of values of q. Species
1, 2 and 3 are the basal (producer), intermediate, and top species respectively. The non-zero parameter values are x1 = 0.4,
x2 = 0.08, y21 = 2.09, y32 = 5, α21 = 1, α32 = 1, eij = 1, r1 = 1, K1 = 1, B012 = 0.16129, B023 = 0.5.

feel that our intermediate responses have as much empir-
ical support as do standard type II and III responses. A
thorough review of existing empirical studies and possibly
further empirical work are needed to determine the over-
all distribution and patterns of functional responses with
respect to factors such as organism type (endotherm, ec-
totherm, vertebrate, invertebrate, etc.), diet type (herbi-
vore, carnivore, specialist, generalist, degree of omnivory,
etc.) or trophic level of predator or prey.

This brief overview of some empirical results shows
that strong type III interactions have been found at all
positions in food chains. Extrapolating from the results of
the three species model with mixed functional responses
to larger systems suggests that not all the interactions in
larger systems need to be modified type II or type III for a
chaotic or non-permanent type II system to be stabilized
and that stabilization will be more effective if modified
type II and type III links are high in the food chains. The

existing empirical data suggest that type III interactions
are sufficiently common and widely distributed to play an
important role in the stabilization of food webs, though
much empirical and theoretical work is necessary to fur-
ther assess this.

Most empirical studies only discern a fairly strong (q ≈
1) type III response, but the models explored here are sta-
bilized at much smaller values of q (typically q ≈ 0.1−0.3).
Also, the dynamics are very sensitive to small changes in
q in the transition from stable to chaotic dynamics. The
difference between modified type II functional responses
and a standard type II response is so slight that it is typ-
ically indistinguishable in available empirical data. The
main difference occurs when the prey density is small and
existing studies are not generally designed to closely ex-
amine functional responses in this range. New experimen-
tal approaches may be needed to detect these slight but
dynamically significant variations in functional response.
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Fig. 4. Local minima and maxima for the top species in a simple three-species food chain with one type II link and one type III
link. The non-zero parameter values are as in Figure 3: x1 = 0.4, x2 = 0.08, y21 = 2.09, y32 = 5, α21 = 1, α32 = 1, eij = 1,
r1 = 1, K1 = 1, B012 = 0.16129, B023 = 0.5. (a) The link between the top and intermediate species has type III functional
response. (b) The link between the intermediate species and the producer species has type III functional response.

Fig. 5. Ten species network. Primary producers are at the
bottom of the diagram (species 1 and 2) and arrows show the
flow of biomass from prey to predator. The number by each
arrow is αij where i is the predator and j the prey.

Stabilization of five-species system has previously been
demonstrated in a model of two food chains linked by the
top predator [39]. The model combines ratio-dependent
prey switching and single-species type II functional re-
sponses to give an overall functional response with that
is similar to a q = 1 type III functional response but
with some predator-prey ratio dependence. Like the re-
sults presented here, this system sometimes has chaotic
dynamics that can be stabilized by small changes in a pa-
rameter, in this case the prey-preference parameter. These
findings imply that large ecological networks may have
their stability increased by relatively subtle but specific
changes in the direct interactions between network nodes
that slightly change the functional response. However,
like earlier findings on the role of omnivory [7] and weak
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Fig. 6. Local minima and maxima for each species in the ten-species food web shown in Figure 5 for a range of values of q.
Each panel is labeled with the species number; species 1 and 2 are the producer species. Note the use of a log axis to show in
more detail the behavior of the minima. The non-zero parameter values are x3−10 = 0.2; yij = 2.5 for i = 3 − 6, yij = 5 for
i = 7 − 10; α31 = α32 = α41 = α42 = 0.5, α51 = 1, α63 = α64 = 0.5, α73 = 1, α84 = α85 = 0.4, α86 = 0.2, α98 = 1, α10,5 = 0.8,
α10,6 = 0.2; eij = 1; r1 = r2 = 1; K1 = K2 = 1; B0ji = 0.3 for any i, j where αij > 0.

interactions [8], this finding must be treated with caution.
The sensitivity of the dynamics to slight changes in the
functional responses makes it difficult to ascribe empiri-
cally observed patterns, for example in population fluctu-
ations or food web structure, to specific dynamical mecha-
nisms, especially in the face of both stochastic and chaotic
variability in many extrinsic environmental factors.

To date, structural and dynamical studies of com-
plex food webs have been very separate although this
is beginning to change [40–42]. Structural studies have

tackled systems with large biodiversity, while many dy-
namical studies, particularly those with biologically based
features such as non-linear functional responses, are typ-
ically restricted to systems with few species. The results
presented here suggest that modified type II interactions
stabilize complex food webs and permit the construction
of dynamically persistent food webs over a much broader
range of species and interaction parameters. This will al-
low the dynamics of much larger networks to be studied
in a more empirically realistic manner, while remaining
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dynamical constraints might provide insight into the ori-
gins of food web network topology. In particular, such
insights should go far in explaining why food webs ex-
hibit such predictably and precisely constrained struc-
ture [17,18,21,26,42–47].

Combining modified type II functional responses with
the network topology of the niche model [26] enables dy-
namical analyses of large, realistically linked networks.
The robustness of these models may form an effective
foundation for including non-trophic effects such at nutri-
ent dynamics and population migrations in rigorous mod-
els of ecological networks. Even without such extensions,
the modeling framework described here should allow other
important questions, such as the effects of topology, om-
nivory, interaction strength, indirect interactions, and ex-
tinctions [43] on network stability, to be studied in much
larger systems than have been investigated so far.

John Harte, Ed Connor and Lara Cushing made valuable com-
ments and suggestions on the manuscript. Support for this
work was provided by the U.S. National Science Foundation
Grants DEB-9905446, DUE-9950461, DEB-0083929 and DBI-
0234980 to NDM. This work was greatly facilitated by partic-
ipation in the 1997 Santa Fe Institute Complex Systems Sum-
mer School (RJW) and research visits to the Santa Fe Institute
(RJW, NDM).

References

1. R.M. May, Stability and Complexity in Model Ecosystems
(Princeton, 1973)

2. S.L. Pimm, J.H. Lawton, Nature 275, 542 (1978)
3. P. Yodzis, Nature 289, 674 (1981)
4. S.L. Pimm, Food Webs (Chapman & Hall, London, 1982)
5. S.L. Pimm, J.H. Lawton, J.E. Cohen, Nature 350, 669

(1991)
6. K. McCann, Nature 405, 228 (2000)
7. K. McCann, A. Hastings, Proc. R. Soc. Lond. B 264, 1249

(1997)
8. K. McCann, A. Hastings, G.R. Huxel, Nature 395, 794

(1998)
9. P. Yodzis, S. Innes, Am. Nat. 139, 1151 (1992)

10. A. Hastings, T. Powell, Ecology 72, 896 (1991)
11. K. McCann, P. Yodzis, Ecology 75, 561 (1995)
12. C.S. Holling, Can. Entom. 91, 293 (1959)
13. S.H. Strogatz, Nature 410, 268 (2001)
14. P. Yodzis, J. Anim. Ecol. 67, 635 (1998)

15. P. Yodzis, Ecology 81, 261 (2000)
16. J.E. Cohen, Food webs and niche space (Princeton, 1978)
17. R.J. Williams, E.L. Berlow, J.A. Dunne, A.-L. Barabasi,

N.D. Martinez, Proc. Nat. Acad. Sci. 99, 12913 (2002)
18. D. Garlaschelli, G. Caldarelli, L. Pietronero, Nature 423,

165 (2003)
19. A.E. Krause, K.A. Frank, D.M. Mason, R.E. Ulanowicz,

W.W. Taylor, Nature 426, 282 (2003)
20. N.D. Martinez, Am. Nat. 139, 1208 (1992)
21. N.D. Martinez, Science 260, 242 (1993)
22. N.D. Martinez, Oikos 66, 403 (1993)
23. P.H. Warren, Trends Ecol. Evol. 9, 136 (1994)
24. N.D. Martinez, Am. Nat. 144, 935 (1994)
25. J.A. Dunne, R.J. Williams, N.D. Martinez, Proc. Nat.

Acad. Sci. 99, 12917 (2002)
26. R.J. Williams, N.D. Martinez, Nature 404, 180 (2000)
27. L.A. Real, Am. Nat. 111, 289 (1977)
28. L.A. Real, Ecology 60, 481 (1978)
29. W.W. Murdoch, A. Oaten, Adv. Ecol. Res. 9, 1 (1975)
30. M.P. Hassell, The dynamics of arthropod predator-prey sys-

tems (Princeton Univ. Press, Princeton, 1978)
31. P. Yodzis, P. Oecologia 65, 86 (1984)
32. N.G. Hairston Jr, N.G. Hairston Sr., Am. Nat. 142, 379

(1993)
33. R.J. Williams, N.D. Martinez, Am. Nat. 163, 458 (2004)
34. J.E. Gross, L.A. Shipley, N.T. Hobbs, D.E. Spalinger, B.A.

Wunder, Ecology 74, 778 (1993)
35. J.M. Fryxell, C.M. Doucet, Ecology 74, 1297 (1993)
36. A. Angerbjörn, M. Tannerfeldt, S. Erlinge, J. Anim. Ecol.

68, 34 (1999)
37. J.H. Steele, The structure of marine ecosystems (Harvard,

Cambridge, 1974)
38. O. Sarnelle, Am. Nat. 161, 478 (2003)
39. D.M. Post, M.E. Conners, D.S. Goldberg, Ecology 81, 8

(2000)
40. G.F. Fussman, G. Heber, Ecol. Lett. 5, 394 (2002)
41. M. Kondoh, Science 299, 1388 (2003)
42. U. Brose, R.J. Williams, N.D. Martinez, Science 301, 918

(2003)
43. J.A. Dunne, R.J. Williams, N.D. Martinez, Ecol. Lett. 5,

558 (2002)
44. J. Camacho, R. Giumera, L.A.N. Amaral, Phys. Rev. Lett.

88, 228102 (2002)
45. J. Camacho, R. Guimera, L.A.N. Amaral, Phys. Rev. E

65, 030901
46. U. Brose, A. Ostling, K. Harison, N.D. Martinez, Nature

428, 167 (2004)
47. J.A. Dunne, R.J. Williams, N.D. Martinez, Mar. Ecol.

Prog. Ser. (in press)


